Time discretization and convergence to superdiffusion equations via Poisson distribution

نویسندگان

چکیده

Let $ A be a closed linear operator defined on complex Banach space X $. We show novel representation, using strongly continuous families of bounded operators \mathbb{N}_0 $, for the unique solution following time-stepping scheme \begin{document}$ \begin{eqnarray*} (*)\left\{ \begin{array}{rcl} \,_C \nabla^{\alpha} u^n& = &Au^{n}+f^{n}, \quad n\geq 2;\\ u^0& &u_0; \\ u^1& &u_1; \end{array} \right. \end{eqnarray*} $\end{document} as well its convergence with rates to abstract fractional Cauchy problem$ \partial_t^\alpha u(t) & Au(t)+f(t), t>0;\\ u(0)& u'(0)& $in superdiffusive case 1<\alpha <2. Here, u^n is Caputo-like difference order \alpha.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Numerical Time-Averaging and Stationary Measures via Poisson Equations

Numerical approximation of the long time behavior of a stochastic differential equation (SDE) is considered. Error estimates for time-averaging estimators are obtained and then used to show that the stationary behavior of the numerical method converges to that of the SDE. The error analysis is based on using an associated Poisson equation for the underlying SDE. The main advantages of this appr...

متن کامل

Inertial Manifolds for Partial Differential Evolution Equations under Time- Discretization: Existence, Convergence, and Applications

Dans ce travail nous ttudions l’existence et la convergence de variites inertielles pour la discretisation en temps d’equations d’evolution. Nous montrons que pour des pas de temps petits, et sous une condition qui assure l’existence de varietts inertielles exactes (condition d&cart spectral), le probleme disc&i& posdde une varitti: inertielle de mCme dimension. Nous montrons la convergence de ...

متن کامل

A Zero-inflated Occupancy Distribution: Exact Results and Poisson Convergence

We introduce the generalized zero-inflated allocation scheme of placing n labeled balls into N labeled cells. We study the asymptotic behavior of the number of empty cells when (n,N) belongs to the “right” and “left” domain of attraction. An application to the estimation of characteristics of agreement among a set of raters which independently classify subjects into one of two categories is als...

متن کامل

Convergence of compressible Euler–Poisson equations to incompressible type Euler equations

In this paper, we study the convergence of time-dependent Euler–Poisson equations to incompressible type Euler equations via the quasi-neutral limit. The local existence of smooth solutions to the limit equations is proved by an iterative scheme. The method of asymptotic expansion and the symmetric hyperbolic property of the systems are used to justify the convergence of the limit.

متن کامل

promotion time cure model with generalized poisson-inverse gaussian distribution

background & aim: in the survival data with long-term survivors the event has not occurred for all the patients despite long-term follow-up, so the survival time for a certain percent is censored at the  end  of the  study.  mixture  cure  model  was  introduced  by boag,  1949  for  reaching  a  more efficient analysis of this set of data. because of some disadvantages of this model non-mixtur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Analysis

سال: 2023

ISSN: ['1534-0392', '1553-5258']

DOI: https://doi.org/10.3934/cpaa.2023001